CONTENTS

- A Study on Complications Commonly Encountered in Ageing
 - F. Navabazar

- A Survey of Lecitins in Native Plant Seeds
 - S.S. Aqwal, A. Garg and Seth Rajkaran

- Alkaloidal Activity of Root of Habu in Indicum Linn.
 - Naveen Goyal, S.K. Sharma, Sunil Singh and Neera Vatsavera

- Anti-inflammatory and Antimicrobial Activity of Safflower-cassia-giloy-sartani – A Polyherbal
 Unani Formulation
 - S.S. Aqwal, A. Garg and Seth Rajkaran

- Antimicrobial Activity of Pamelia pellata
 - S. Tarique Abdullah, Hina Hanif, S.I. Ansari and M.S. Alam

- Anti-microbial Studies on Some Plants – A Review
 - Vivek Kumar and Surendra Kumar Sharma

- Bioflavonoids – A Review of Chemistry and Therapeutic Profile
 - Neeti Jain and Uma Bhardwaj

- Cauterization in Unani System of Medicine – A Review
 - Mohammed Shakul Ansari, Mohammad Usman and Rashid Ali

- Chemical Composition and Antimicrobial Activity of Comoratia bursia from Cholistan Desert, Pakistan
 - Rehena Nasreen, Karamat Mahmood and Muhammad Arshad

- Diuretic Activity of the Extracts of Asansodis gogatis Leaves
 - T. Sharif, Piyasa Kirubha, D. Mogalveda, S. Hemalatha and K. Karumambig

- Dyslipidemia in Type II Diabetes and the Effect of Glycemic Control on Type II Diabetes
 - Gouri Rani Banik, Mohammad Monirur Islam, M.A. Zafar and Konchan Chakma

- Herbaristic List of Monocots of Nawa Desert, Sindh, Pakistan
 - Rahmatulla Qureshi and G. Raza Bhatti

- Free Radical Oxidation of Blood Proteins in Patients with Diabetes Mellitus and Myocardial Infarction
 - Naseer Parwez and T. Latif

- Heavy Metals and Macronutrients Content in Selected Herbal Plants of South-Western Nigeria
 - A. A. Lawale, B.C. Emele, L.O. Nwosu, M.A. Olayiwola and A.A. Iwelu

- Impact of Different Root Cuts on the Growth and Yield of Kuth (Saussurea lappa) in Azote, Northern Areas of Gilgit
 - Muhammad Din and Mohammad Qazi

- Impact of Forrest of Beech on Water Temperature
 - Farrukh Ali and E.H. Zaidi

- Improvement of Insulin Sensitivity with the Help of Diet – A Concept of Dietotherapy (Itay-bel-
giliz)
 - Wasis Ahmad, Ahmed Sayeed, F.S. Shereen and K.Z. Khan

- In vitro Studies on Antibacterial Property of the Root and Stem Bark Extracts of Oroxylum indicum
 - Nargis Sultan Chowdhury, Mohammad Rezul Karim and Mohamed Sobhan Khan

- Life History and Morphology of Micronotoma Scalza
 - Rehmatullah Qureshi, Begum Shaffi and Francis G. Gilbert

- Microbiological Evaluation of Potable and Packaged Drinking Water Samples
 - S. Shennagane, D. Manavalan, D. Venkappa, R. Sankaran, V.P. Pandey and
 A. A. C. Kumar

- PCR Detection and Histopathology of WSBV Infected Pennisetum mononan (Fab)
 - N. Chandrakala, G. Srinathkumar, P. Samuel, U. Ganesan, M. Prabakaran and
 M. Ayman

- Penicillin Susceptibility Testing of Streptococcus pneumoniae by Oxacillin Disk Screening
 Method and Standard Broth Microdilution Method
 - A. Athar, R. Razzaq and M. Qasim

- Pharmacological Investigations on Cassia occidentalis Linn.
 - Bilal Ahmad, N.A. Khan and Janal Akbar

- Preliminary Phytochemical and Pharmacological Studies of Alchemilla collusaria Linn.

- Some Pharmacological Studies on Moringa oleifera, Root
 - Bilal Ahmad, N.A. Khan, Ghulam Ahmad, M. Iqbaluddin

- Survey of Enoneoxygen Drugs in Unani Medicine – A Literature Review
 - Muhibul Alam Khan, Mohammad Afsar Ahmed, Mohammad Nasrawai Khan

- The Relationship of Polysaccharides Aromatic Hydrocarbons and Heavy Metals
 - Arshad Ali Khan, Muhammad Sajid Ali, Mohammad Aslam Khan

- The Study of Self-exam and Some Factors Influencing it among Students: Passing year Last Study
 - M.N.H. Bagchi and Atiya Mohammad, A. H. Ibrahim and G.M. Sharifi Hash

- Tools of Biotechnology in Drug Development
 - Ritesh P. Bhagat and A.F. Chandwark
Dyslipidemia in Type II Diabetes and the Effect of Glycaemic Control on Type II Diabetes

Gouri Rani Banik*, Mohammad Monirul Islam¹, M.A. Zafar² and Kanchan Chakma³
¹Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,
²Department of Biochemistry, Chittagong Diabetic Hospital, Chittagong,
³Biochemistry Laboratory, Popular Diagnostic Center, Dhaka, Bangladesh.

Lipid profile of Type II Diabetes patients was determined before and after treatment. The study was carried out on 180 (Male/Female: 91/89) treated patients who were registered in Chittagong Diabetic Hospital and 80 (Male/Female: 42/38) newly diagnosed diabetic patients who were selected randomly. 40 (Male/Female: 20/20) non-diabetic healthy subjects were selected for control. All the subjects included in this study were between the age of 40-70 years.

In the study, fasting plasma glucose (FPG), serum total cholesterol (TG), serum triglyceride (TG), high density lipoprotein-Cholesterol (HDL-C) were measured. Low density lipoprotein-Cholesterol (LDL-C) was also determined (using Friedwald's formula).

When the lipid profiles of untreated diabetic patients were compared with the control, an increase in TC, HDL-C, LDL-C and TG were found in the former. The increase in TC and LDL-C was highly significant (p<0.001), increase in TG was found significant (p<0.005) whereas increase in HDL-C was not significant.

When the lipid profile of treated patients was compared with the untreated patients, decrease in TC, TG and LDL-C in the former patients was found as highly significant (p<0.001) for all parameters, whereas, decrease in HDL-C was found to be less significant.

In untreated Type II Diabetes Mellitus, significant positive correlations were found between fasting plasma glucose (FPG) and (a) TC (r = + 0.21, p<0.01), (b) TG (r = + 0.26, p<0.01), (c) LDL-C (r = + 0.19, p<0.01) whereas, no significant correlation was found between glucose and HDL-C concentrations.

In Type II Diabetes Mellitus, subjects, after treatment, significant positive correlations were also found between fasting plasma glucose and (a) TC (r = + 0.21, p<0.01), (b) TG (r = + 0.26, p<0.01), (c) LDL-C (r = + 0.19, p<0.01), whereas no significant correlation was found between glucose and HDL-C concentrations.

It was evident from this study that lipid abnormalities exist in Type II Diabetes and significant improvement against lipid abnormalities occur after treatment. Lipid abnormalities were related to glycaemic control.

Keywords: Diabetes Mellitus, Glycaemic control, Total Cholesterol (TC), Triglyceride (TG), High density lipoprotein Cholesterol (HDL-C), Low density lipoprotein Cholesterol (LDL-C), FPG (Fasting Plasma Glucose).

Introduction

Diabetes Mellitus, particularly Type II affects large number of people of wide range of ethnic and economic levels in both developed and developing countries. Globally, 135 million adults with diabetes were estimated in 1995. By the year 2025, the projected figure risen to 300 million, an increase of approximately 120%. Whereas, the rise was projected to be of the order of 40% in the developed and 170% in the developing countries. As a result, more than 80% of persons were presumed to be diabetic in the developing countries by the year 2025¹. For both years' estimations (1995 and 2025), the populations with the
highest prevalence of diabetes are in India, China and the United States of America.

The effects of diabetes mellitus include long-term damage, dysfunction and failure of various organs with characteristic symptoms such as thirst, polyuria, blurring of vision, and may lead to stupor, coma and even death, if the patients remain untreated. The major change recommended in the diagnostic criteria for diabetes mellitus is the lowering of the diagnostic value of the fasting plasma glucose concentration to 7.0 mM (126 mg/dl)\(^5\), from the former level of 7.8 mM (140 mg/dl)\(^6\).

The current emphasis on fasting glucose to diagnose diabetes has led to a new term to accompany i.e. impaired glucose tolerance (IGT) – the impaired fasting glucose (IFG). The IFG [FPG 110-125 mg/dl (6.1-6.9 mM)] is a condition which is likely to progress to diabetes during follow-up as FPG deteriorate.

Diabetes and Lipid Metabolism

Lipid and lipoprotein abnormalities are common in diabetes mellitus. Non-insulin dependent Type II Diabetes is frequently associated with elevated concentration of total serum triglycerides and total serum cholesterol as well as, reduced concentration of high density lipoprotein cholesterol.

The most common lipid abnormalities in diabetes mellitus are hypertriglyceridemia and reduced HDL cholesterol concentration\(^7\). The concentration and metabolism of plasma lipoproteins in diabetes is influenced by several factors, namely, type of diabetes, degree of glycemic control, type of treatment, presence or absence of diabetic complications, presence of concomitant primary and other secondary causes of hyperlipidemia, diet and obesity\(^8\). Serum level of low density lipoprotein (LDL) varies and tends to be raised in poorly controlled diabetic patients\(^9\). Diabetes can affect LDL metabolism in several ways. Diabetes Mellitus is associated with altered LDL lipid composition. In Type II Diabetes, LDL enrichment with triglyceride has been detected and LDL isolated from patients with hypertriglyceridemia showed decreased LDL receptor binding and less ability to down regulate LDL receptor activity and sterol synthesis\(^9\). Hypercholesterolemia and altered LDL composition are mostly associated with coronary heart disease in Type II Diabetic patients\(^8\). Plasma HDL-cholesterol level reduces to below normal in Type II Diabetic patients\(^8\) and non-diabetic subjects. Mild to moderate elevation of LDL-cholesterol levels has been found in studies of diabetic subjects.

Accelerated atherosclerosis of the characteristic of diabetes mellitus. TI insulin dependent and non-insulin dependent subjects, and contributes to an increase in the quantity and composition of lipid plays major role in the pathogenesis of this disease.

Materials and Methods

Study subjects: This study was total of 300 (M/F: 153/147) non-insulin dependent subjects attending the Chittagong E Khulshi, Chittagong, Bangladesh treated for 40-70 years. Among them, 80 (M/F: 4) diagnosed (according to 1999 WHO criteria), 40 (M/F: 20/20) non-diabetic 40-70 years were randomly selected.

Estimation of Plasma Glucose

Samples were taken and placed in fluoride. The plasma was separated and a few hours of collection. Plasma glucose was determined using a Technicon (2) Auto-analyzer using enzymatic colorimetric method\(^10\).

Estimation of Serum Lipids

Serum was collected from fresh blood centrifugation at 2500 rpm for 10 min at 4°C until analysis within one week. Serum cholesterol was detected by using RA-50 Cholesterol-E employing enzymatic method\(^11\).

Estimation of Serum Total Cholesterol

Total cholesterol was detected by R. Determine analyzer by using enzymatic procedure of the cholesteryl ester by cholesteryl oxidation of free cholesterol by cholesteryl ester.

Estimation of Serum HDL-Cholesterol

Serum HDL-Cholesterol was determined using “cholesterol enzymatic reagents”\(^11\). 500 mixed with 50 μl of HDL-Cholesterol tube and was kept on stand for 10 min centrifuged for 15 minutes at 3000 rpm HDL-cholesterol was carried out from by using enzymatic reagent and Auto-analyzer.

Estimation of Serum LDL-Cholesterol

Cholesterol was calculated from the triglycerides, total and LDL-Cholesterol Friedewald’s formula\(^12\).

Statistical Methods

All data were presented as the I

concentrations of untreated diabetic (Type II) and control subjects studied are presented in Table 2 and shown in Fig. 1. An increase in the lipid profile, TC, HDL-C, LDL-C and TG was found in untreated diabetic subjects. The increase in TC and LDL were highly significant (p<0.001), whereas increase in TG was significant (p<0.005). However, there were no significant changes observed in the HDL level.

Comparison of Serum Lipids between Diabetic Subjects Before and After Treatment

When treated diabetic subjects were compared with untreated diabetic subjects as presented in Table 3 and shown in Fig. 1, the serum triglycerides, total and LDL-Cholesterol levels were significantly reduced (p<0.001 for all the parameters) but there was noted a less significant change in case of serum HDL-Cholesterol level.

Correlations of Glycaemic Control and Serum Lipids in Diabetic Subjects

The correlation of glycaemic control and plasma lipids is shown in Table 4. Only the fasting plasma glucose levels of the study subjects strongly correlated (positively) with serum triglycerides.

In untreated Type II Diabetes Mellitus patients,

TABLE 1
Clinical and glycaemic characteristics of the subjects studied

<table>
<thead>
<tr>
<th>Groups</th>
<th>Age (Years) (Mean ± SD)</th>
<th>BMI (kg/m²) (Mean ± SD)</th>
<th>Fasting Plasma Glucose (mM/L) (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>50.03 ± 9.11</td>
<td>21.20 ± 2.05</td>
<td>4.66 ± 0.39</td>
</tr>
<tr>
<td>Untreated Type II diabetes</td>
<td>47.25 ± 7.01</td>
<td>22.56 ± 3.30</td>
<td>10.39 ± 3.46***</td>
</tr>
<tr>
<td>Treated Type II diabetes</td>
<td>49.88 ± 8.75</td>
<td>25.14 ± 4.37</td>
<td>3.90 ± 2.36**</td>
</tr>
</tbody>
</table>

BMI : Body mass index.
Significance of difference when compared with normal control *** p<0.001
Significance of difference when compared with untreated NIDDM ** p<0.001
TABLE 2
Comparison for serum lipid concentrations (Mean ± SD) between untreated NIDDM and normal controls

<table>
<thead>
<tr>
<th>Serum lipids mg/dl</th>
<th>Untreated Type II diabetes N=80</th>
<th>Normal Control N=40</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>224.68 ± 37.95</td>
<td>204.57 ± 24.78</td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>176.69 ± 77.81</td>
<td>148.57 ± 51.39</td>
<td></td>
</tr>
<tr>
<td>HDL-Cholesterol</td>
<td>43.19 ± 16.36</td>
<td>39.92 ± 7.55</td>
<td></td>
</tr>
<tr>
<td>LDL-Cholesterol</td>
<td>143.43 ± 44.83</td>
<td>135.03 ± 28.12</td>
<td></td>
</tr>
</tbody>
</table>

NS= Not significant.

TABLE 3
Comparison for serum lipid concentrations (Mean ± SD) between untreated and treated NIDDM

<table>
<thead>
<tr>
<th>Serum lipids mg/dl</th>
<th>Untreated NIDDM N=80</th>
<th>Treated NIDDM N=40</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>224.68 ± 37.95</td>
<td>202.03 ± 38.31</td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>176.69 ± 77.81</td>
<td>162.46 ± 83.24</td>
<td></td>
</tr>
<tr>
<td>HDL-Cholesterol</td>
<td>43.19 ± 16.36</td>
<td>37.36 ± 10.25</td>
<td></td>
</tr>
<tr>
<td>LDL-Cholesterol</td>
<td>143.43 ± 44.83</td>
<td>127.32 ± 38.03</td>
<td></td>
</tr>
</tbody>
</table>

N.S: Not significant.

TABLE 4
Correlations of glycaemic control (fasting plasma glucose) and serum lipids in diabetic subjects (only statistically significant correlations are shown)

<table>
<thead>
<tr>
<th>Serum lipids</th>
<th>Untreated NIDDM Fasting plasma glucose Level of significance</th>
<th>Treated NIDDM Fasting plasma glucose Level of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Total Cholesterol</td>
<td>r = +0.01</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Serum Triglycerides</td>
<td>r = +0.07</td>
<td>p<0.01</td>
</tr>
<tr>
<td>HDL-Cholesterol</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>LDL-Cholesterol</td>
<td>r = +0.04</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

NS = No Significant correlation.
Fig. 1
Bar diagram showing the Mean (±) SD serum lipids in diabetic patients and normal control.

TG = Triglycerides
TC = Total Cholesterol
HDL-C = High Density Lipoprotein-Chol.
LDL-C = Low Density Lipoprotein-Chol.

T = SD
significant positive correlations were found between fasting plasma glucose and (a) TC (r = +0.01, p<0.01), (b) TG (r = +0.26, p<0.01), (c) LDL-C (r = +0.19, p<0.01), whereas no significant correlation was found between glucose and HDL-C concentrations.

In treated Type II Diabetes Mellitus subjects, significant positive correlation was also found between fasting plasma glucose and (a) TC (r = +0.21, p<0.01), (b) TG (r = +0.26, p<0.01), (c) LDL-C (r = +0.19, p<0.01), whereas no significant correlation was found between glucose and HDL-C concentrations.

Discussion

This prospective study has looked into lipid abnormalities in newly diagnosed NIDDM patients and the effect of glycaemic control of the patients with appropriate treatment.

Uusitupa et al., found higher serum triglyceride and lower HDL-Cholesterol concentrations in newly diagnosed untreated patients with NIDDM compared to non-diabetic subjects. But serum total cholesterol levels were similar in diabetics and controls. Mahatab et al. found an increase in serum triglyceride but a decrease in HDL-cholesterol in untreated newly diagnosed diabetics as compared with normal control. Serum total cholesterol levels were similar in diabetics and control subjects. In this study, untreated newly diagnosed Type II diabetic subjects had highly significant LDL-Cholesterol value than their normal counterpart. For TG, untreated diabetic subjects showed significantly higher value than the control subjects did, but increase in serum HDL-cholesterol in the untreated diabetic subjects was not significant as compared to the normal control. Briones et al. also found that there was significantly increased triglyceride, low HDL-Cholesterol and normal total cholesterol levels in diabetics as compared to control.

Elevation of serum triglyceride level in uncontrolled Type II diabetic subjects was the most common lipid abnormality. Results obtained from present study are also in agreement with those observations showing elevated TG levels.

Das et al. and Miah et al., found significantly higher concentration of serum triglyceride, total and LDL-cholesterol. Our findings were similar to their observations except for HDL-cholesterol. Such difference in results might be due to a variety of reasons such as case selection criteria, nature of control population, treatment and severity of diabetes and degree of diabetic control.

The levels of VLDL-triglyceride are elevated in the compared with obese control. It is of triglyceride declines to normal sulfonyl urea and diet control (Siu treatment, plasma triglyceride level 50% (Dunn et al.)

Increased LDL-Cholesterol found in patients with Type II E study period, we also observed a plasma glucose and LDL-cholesterol untreated [LDL-C (r = +0.04), p<0.01] during the association of LDL-cholesterol further mentioned in section of related glycemic control.

The high HDL-Cholesterol in diabetic subjects both before and much consistent with the findings of carried out on treated and untreated patients.

The HDL-cholesterol levels in patients with maturity onset did not related to diabetic control (K), was very common in non-insulin (Nikkila et al., Bergman et al.) cholesterol level was lowered in b Diabetic patients before treatment, there was an elevation of HDL-cholesterol in diabetics and there was no remarkable cholesterol level in Type II Diabetes. Study we had a higher value in untreated condition but there was a reduction of HDL-cholesterol further research in this regard is needed.

Relationship between the Lipid and Glycemic Control

The relationship between the fasting glucose level was investigated taking blood samples before and after and untreated Type II Diabetes Mellitus correlation was found between total cholesterol (p<0.01), triglyceride (p<0.01) and no significant correlation found between glucose and HDL-C.
eset Mellitus subjects, significant positive correlations
are also found between fasting plasma glucose and
total cholesterol (p<0.01), triglyceride (p<0.01), LDL-
cholesterol (p<0.01) and no significant correlation was
found between glucose and HDL-cholesterol. Studies on
non-ketotic diabetic subjects both before and after control
of carbohydrate metabolism showed a high degree of
correlation between hemoglobin A1C concentrations and
serum triglyceride levels (Peterson et al.23). Schmidt et al.26
found significant positive correlation of HbA1
with serum triglyceride, total and LDL-cholesterol, but a
slight negative correlation with HDL-cholesterol in normal
weight Type II Diabetics. Kennedy et al.23 found no
correlation between HDL-cholesterol levels and HbA1,
which was similar to our present study. So there is a
wide scope for conducting further research in this area
which can lead to utilization of diagnostic values of
lipid profile in understanding extent of the disease.
Parameters-based demographic studies in this context
shall also be helpful in improving health status of given
populations.

Acknowledgment

One of the authors (Gouri Rani Banik) expresses
gratitudes to Dr. Dwapiayan Sikder and Dr. Mohammad
Alauddin of the Department of Biochemistry and
Molecular Biology, University of Chittagong, Ms. Soma
Chowdhury of the Department of Statistics, Chittagong
University and to the Staff of Dhaka BIRDEM Library.

REFERENCES

burden of diabetes, 1995-2025, Prevalence numerical estimation
and projection, Diabetes Care, 21, pp. 1414-1431.
on the basis of etiologies versus degree of insulin deficiency,
Diabetes Care, 21, pp. 666-667.
Care, 4, pp. 561-571.
Serum lipids and lipoproteins in newly diagnosed Non-insulin
dependent (Type II) diabetic patients with special reference to
factors influencing HDL-cholesterol and triglycerides,
Diabetes Care, 9, pp. 17-22.
Publisher, BV, p. 766.
Integrated study: low density lipoprotein metabolism and very
low density lipoprotein metabolism in Non-insulin-dependent
diabetes, Metabolism, 36, pp. 870-877.
Receptor mediated catabolism of low density lipoprotein in
man. Quantitation using glycosylated low density lipoprotein,
Diabetes, 30(2), pp. 82-87.
HDL-, HDL2- and HDL3- Cholesterol in patients with normal
and impaired glucose tolerance as well as in diabetic patients,
Diabetic Care, 18(1), pp. 19-22.
Lipid and lipoprotein abnormalities in NIDDM, J. Med.
Assoc., Thailand, 59, pp. 3-13.
glucose oxidase with an alternative oxygen acceptor, Ann.
of serum triglycerides by the use of enzymes, Clin. Chem.,
29, pp. 476-482.
for the enzymatic determination of serum total cholesterol
with improved lipolytic efficiency, Clin. Chem., 29, pp. 1075-
1060.
Cholesterol determination in high density lipoproteins
882-884.
Estimation of the concentration of low density lipoprotein
cholesterol in plasma without use of the preparative
lipoprotein in diabetic patients, Diabetologia, 13, pp. 285-
291.
17. Mahbub, H., Khatoon, M., Rahaman, E. and Banik, N.O.,
(1983). Lipoprotein pattern in diabetics of Bangladesh,
of plasma lipids and apolipoprotein in insulin-dependent and
non-insulin dependent diabetes, Metabolism, 13, pp. 42-49.
lipoprotein in diabetic patients, Diabetologia, 14, pp. 285-
291.
Lipid abnormalities in untreated maturity onset diabetes and
the effect of treatment, Diabetologia, 16, pp. 101-
106.
effect of diabetic control on very low density lipoprotein
triglyceride metabolism in patients with Type II Diabetes
 Mellitus and marked hypertriglyceridemia, Metabolism,
pp. 117-123.
Series. 727.

